把光学软件啊什么的地址全都删掉了~ sorry~

腾讯微博 twitter 你好,欢迎光临! 

Tag Archives: optical

光纤标准和技术指标

2012.04.9 , , 1 Comment , 2,704 views

经过了几十年的发展,人们已经可以生产出各种各样的光纤。不同种类的光纤,由于其传输特性不同,会有不 同的适用范围。

  按光在光纤中的传输模式划分,可分为多模和单模光纤两种。常用多模光纤的直径为125μm,其中芯径一般在 50~100μm之间。在多模光纤中,可以有数百个光波模在传播。多模光纤一般工作于短波长(0.8μm)区,损耗 与色散都比较大,带宽较小,适用于低速短距离光通信系统中。多模光纤的优点在于其具有较大的纤芯直径,可以用较高的耦合效率将光功率注入到多模光 纤中。

  常用单模光纤的直径也为125μm,芯径为8~12μm。在单模光纤中,因只有一个模式传播,不存在模间色散, 具有较大的传输带宽,并且在1 550 nm波长区的损耗非常低(约为0.2~0.25 dB/km),因而被广泛应用于高速长 距离的光纤通信系统中。使用单模光纤时,色度色散是影响信号传输的主要因素,这样单模光纤对光源的谱宽和 稳定性都有较高的要求,即谱宽要窄,稳定性要好。单模光纤一般必须使用半导体激光器激励。

  按最佳传输频率窗口划分,可分为常规型单模光纤和色散位移型单模光纤。常规型单模光纤的最佳传输频率在1  310 nm附近,而色散位移光纤的最佳传输频率在1550nm附近。

  按折射率分布的情况化分,可分为阶跃折射率(SI)光纤和渐变折射率(GI)光纤。阶跃折射率光纤 从芯层到 包层的折射率是突变的。多模阶跃折射率光纤的成本低,模间色散高,适用于短距离低速通信。多模渐变折射率 光纤从芯层到包层的折射率是逐渐变小,可使高阶模按正弦形式传播,这样能减少模间色散,提高光纤带宽,增 加传输距离,但成本较高。现在所使用的多模光纤多为渐变折射率光纤。

  目前,国际上单模光纤的标准主要是ITU-T的系列:G.650“单模光纤相关参数的定义和试验方法”、G.652“ 单模光纤和光缆特 性”、G.653“色散位移单模光纤和光缆特性”、G.654“截止波长位移型单模光纤和光缆特性 ”、G.655“非零色散位移单模光纤和光缆特性”及G.656“用于宽带传输的非零色散位移光纤和光缆特性”。ITU -T对多模光纤的标准是G.651“50/125μm多模渐变折射率光纤和光缆特性”。

  国际电工委员会也颁布了系列标准IEC 60793,我国的光纤标准包括国家标准GB/T15912系列和信息产业部颁布 的通信行业标准YD/T系列。

  (1)单模光纤。

  ● 普通单模光纤

  普通单模光纤是指零色散波长在1 310 nm窗口的单模光纤,又称色散未移位光纤或普通光纤,国际电信联盟 (ITU-T)把这种光纤规范为G.652光纤。

  G.652属于第一代单模光纤,是1310 nm波长性能最佳的单模光纤。当工作波长在1310 nm时,光纤色散很小,色 散系数D在0~3.5 ps/nm·km,但损耗较大,约为0.3~0.4 dB/km。此时,系统的传输距离主要受光纤衰减限制。 在1 550 nm波段的损耗较小,约为0.19~0.25 dB/km,但色散较大,约为20 ps/nm·km。传统上在G.652上开通 的PDH系统多是采用1310nm零色散窗口。但近几年开通的SDH系统则采用1550nm的最小衰减窗口。另外,由于掺铒 光纤放大器(Erbium Doped Fiber Amplifier,EDFA)的实用化,密集波分复用(DWDM)也工作于1550nm窗口, 使得1550nm窗口己经成为G.652光纤的主要工作窗口。

  对于基于2.5 Gb/s及其以下速率的DWDM系统,G.652光纤是一种最佳的选择。但由于在1550nm波段的色散较大, 若传输10 Gb/s的信号,一般在传输距离超过50km时,需要使用价格昂贵的色散补偿模块,这会使系统的总成本增 大。色散补偿模块会引入较大的衰减,

  因此常将色散补偿模块与EDFA一起工作,置于EDFA两级放大之间,以免占用链路的功率余度。

  表1是有关G.652光纤的一些光学特性参数和凡何特性参数。

  表1 G.652普通单模光纤的典型光学特性参数和几何特性参数

  

光纤光缆发展情况

2012.04.6 , , 光纤光缆发展情况已关闭评论 , 3,483 views

摘要:本文从技术进步角度论述了世界光纤通信发展41年历史、中国光纤光缆发展30年历史。光纤从高锟的一个科学设想演变成当今世界信息传输的一种最主要 传输媒质,中国光纤光缆业从弱到强终成为世界制造大国,一幕幕壮观的历史画面中无不渗透着技术的不断进步,不断成熟与完善。

关键词:技术进步光纤 激光器 光纤通信 光纤传输窗口 光纤通信波段 光纤制造 光缆产业 光缆名牌 世界制造大国

纵观世界光纤通信发展41年的历史和中国光纤光缆发展30年的历史,可以发现,每次产业的发展进步都来自于光纤光缆技术进步的推动。

     一、光纤通信的启动

1966年,在英国工作的中国人高锟与英国人霍克曼共同提出用玻璃纤维作为光传输介质的科学设想。他们认为,电可以沿着导电的金属线远距离传输,光也可以 沿着导光的玻璃纤维传输,由此产生了低损耗的光导纤维(简称光纤)的概念。当时玻璃纤维的传输损耗为1000dB/km,用于医学技术的短距离直接图像传 输。他们认为玻璃纤维的损耗是可以减小的,如果能降到20dB/km以下,就可用于通信。许多国家开始从事这方面研究。

1970年,美国康宁公司研制成功了损耗小于20dB/km(633nm)的石英单模光纤。1972年康宁又把光纤的损耗降到7dB/km。1973年贝尔实验室发明的MCVD法制造光纤,使光纤的损耗又降到2.5dB/km。

1970年,美国贝尔实验室研制成功室温下连续振荡的GaAlAs半导体激光器。与早期发明的红宝石激光器和气体激光器相比,半导体激光器体积小,耗电 少,又能直接用电流调制,使用极为方便,为光纤通信找到了合适的光源。但是,初期的半导体激光器寿命很短,只有几个小时。此后,各国不懈努力,各种实用的 激光器相继问世。1976年日本NTT和美国麻省理工学院又研制出InGaAsP长波长激光器。1977年贝尔实验室研制成功了室温下寿命为100万小时 的GaAlAs激光器,为光纤通信的商用化奠定了基础。

1976年美国首先在亚特兰大成功地进行了44.736Mb/s传输10km的光纤通信系统现场试验,使光纤通信向实用化迈出了第一步。

1977年美国在芝加哥两个电话局之间开通世界上第一个使用多模光纤商用光纤通信系统(距离7KM,波长850nm,速率44.736Mb/s)。之后日 本、德国、英国也先后建起了光缆线路。1979年单模光纤通信系统也进入了现场试验。以后光纤通信在全世界飞速发展起来。

     二、光纤的技术进步之路

光纤通信商用化以来,由于市场需求和技术进步的推动,光纤品种和特性及应用经历了下述三个重要发展阶段。

     1、多模光纤(第一窗口、第二窗口)

1972-1981年间是多模光纤研发和应用期。前期第一个使用的波长是850nm,称为第一窗口。先开发使用阶跃型多模光纤。接着开发了A1a类梯度多 模光纤(50/125),其衰减3.0-3.5dB/km,带宽200-800MHz·km,数值孔径0.20±0.02或0.23±0.02;以后又开 发使用A1b类梯度多模光纤(62.5/125),其衰减3.0-3.5dB/km,带宽100-800MHz·km,数值孔径0.275±0.015。 这两种光纤与850nm附近波长LED(发光二极管)相配合,形成光通信系统。LED光谱宽度40nm,注入光功率5或20μW,最大比特速度5或 60Mb/s。

70年代末到80年代初,又开发了第二窗口(1300nm)。A1a类光纤衰减0.8-1.5dB/km,带宽200-1200MHz·km;A1b类光 纤衰减0.8-1.5dB/km,带宽200-1000MHz·km。与它们相配合使用的是高辐射LED,其光谱宽度120nm,注入光功率20μW,最 大比特率100Mb/s。

     2、G.652及G.653、G.654单模光纤(第二、三窗口)

1982-1992年是G.652及G.653、G.654单模光纤开始大规模应用期,打开了光纤的第二窗口(1310nm)和第三窗口 (1550nm)。1973-1977年世界各大光纤制造商开发了各种先进的预制棒生产工艺。康宁开发出OVD技术;日本的NTT、住友、古河、藤仓等联 合开发出VAD技术;朗讯改善了MCVD技术;荷兰菲力浦开发了PCVD技术。1982年由美国开始,日、德等国家紧跟,世界上开始大量建设G.652单 模光纤长途工程。单模光纤市场需求大增刺激了其大规模生产。这时康宁的OVD进一步提高了沉积速率,VAD、MCVD、PCVD都外加套管来作为增大预制 棒的措施。以后各家都照着两步法的混合工艺来加大预制棒。90年代法国阿尔卡特开发了APVD技术(MCVD+等离子喷涂工艺)。各大光纤制造商制造技术 的重大进步,为常规单模光纤的广泛应用创造了更好的条件。1984年开始用第三窗口(1550nm)。1984年CCITT发布G.651和G.652标 准。到1985年,G.652光纤1310nm损耗已达0.35dB/km,1550nm损耗已达0.21dB/km。

1985年日本、美国研发的G.653色散位移光纤商用化,其特点是把零色散点从第二窗口移到第三窗口,1550nm波长不仅损耗最低,而且色散也最 小,1988年CCITT发布G.653标准。此光纤大量用于日本的通信干线。90年代初,掺铒光纤放大器(EDFA)开始商用化促使密集波分复用 (DWDM)提上议事日程。但G.653光纤在1550nm波长处的零色散造成DWDM系统波道间的非线性干扰十分严重,因而没在世界上推广开来。 1995年我国建设京九光缆工程,24芯纤中用了六根G.653光纤,一直没开通,以后我国也没用G.653光纤。

这一时期还产生了一种截止波长移位的光纤,它在1550nm处不但损耗低,而且微弯损耗小,适合使用光放大器的长途干线系统和海底光缆系统,CCITT1988年发布G.654标准。

     3、光纤通信窗口全打开,光纤特性大进展

1993-2006期间光纤通信窗口扩展到4、5窗口及S波段,光纤通信窗口全打开,新开发四种新品种光纤,光纤特性更趋完善。

3.1 非零色散位移单模光纤(第三、第四窗口)

为抑制密集波分复用(DWDM)系统中的四波混频(FWM)和交叉相位调制(XPM),减小光通道间的非线性干扰,非零色散位移光纤(WZDSF)在 1993年问世了。先是朗讯推出真波光纤,接着康宁推出了大有效面积LEAF光纤。这些光纤一开始工作在第三窗口,即C波段 (1530-1565nm),1995年后扩展到第四窗口,即L波段(1565-1625nm)。1996年ITU-T制定了G.655标准。1998后 在全世界得到广泛应用。以后光纤特性逐渐提高,标准也在不断趋向完善。

3.2 低水峰单模光纤G.652C(第五窗口)

朗讯1998年推出了全波光纤即低水峰光纤,使1383nm的水峰几乎不存在(衰减〈0.31dB/km〉,打开了光纤的第五窗口,即E波段 (1360-1460nm)。中国1999年开始用全波光纤做光缆,用于九江电信。2000年ITU-T制定了G.652C标准。2001年康宁做出了低 水峰光纤。2002年G.652C光纤在全世界推广开来。从此单模光纤从1260nm至1625nm波长范围内,具有优异的衰减性能。2002年5月 ITU-T对于单模光纤通信系统光波段划分为O、E、S、C、L、U。多模光纤850nm称为第一窗口,单模光纤O带为第2窗口,C带称第3窗口,L带为 第4窗口,E带为第5窗口。把多模光纤和单模光纤的通信波段汇总起来可列出下表。

频带

窗口

波长范围(nm)

频率范围(THZ

1

850(770-910)

O带(Orginal band)      原始波段

2

1260-1360

237.9-220.4

E带(Extended…)       扩展波段

5

1360-1460

220.4-205.3

S带(Short wavelength…)  短波长波段

1460-1530

205.3-195.9

C带(Conventional…)     常规波段

3

1530-1565

195.9-191.6

L带(Longer wavelenth…)  长波长波段

4

1565-1625

191.6-184.5

U带(Utralong wavelenht …)超长波长波段

1625-1675

184.5-179.0

光纤的传输损耗和波长关系如下图所示:

     光纤的传输损耗和波长关系

光衰减器的原理及其应用

2012.04.4 , , 3 Comments , 3,937 views

光衰减器是一种非常重要的纤维光学无源器件,是光纤CATV中的一个不可缺少的器件。到目前为止市场上已经形成了固定式、步进可调式、连续可调式及智能型光衰减器四种系列。

1 衰减器的衰减原理。光衰减器的类型很多,不同类型的衰减器分别采用不同的工作原理。

  ① 位移型光衰减器。

众所周知,当两段光纤进行连接时,必须达到相当高的对中精度,才能使光信号以较小的损耗传输过去。反过来,如果将光纤的对中精度做适当的调整,就可以控制其衰减量。位移型光衰减器就是根据这个原理,有意让光纤在对接时,发生一定的错位。使光能量损失一些,从而达到控制衰减量的目的,位移型光衰减器又分为两种:横向位移型光衰减器、轴向位移型光衰减器。横向位移型光衰减器是一种比较传统的方法,由于横向位移参数的数量级均在微米级,所以一般不用来制作可变衰减器,仅用于固定衰减器的制作中,并采用熔接或粘接法,到目前仍有较大的市场,其优点在于回波损耗高,一般都大于60dB。轴向位移型光衰减器在工艺设计上只要用机械的方法将两根光纤拉开一定距离进行对中,就可实现衰减的目的。这种原理主要用于固定光衰减器和一些小型可变光衰减器的制作。

横向位移型光衰减器

image

模场分布为

image

第二个光纤端面模场分布为

image

横向耦合效率可通过交叠场积分来表示,间距忽略不计: