经过了几十年的发展,人们已经可以生产出各种各样的光纤。不同种类的光纤,由于其传输特性不同,会有不 同的适用范围。

  按光在光纤中的传输模式划分,可分为多模和单模光纤两种。常用多模光纤的直径为125μm,其中芯径一般在 50~100μm之间。在多模光纤中,可以有数百个光波模在传播。多模光纤一般工作于短波长(0.8μm)区,损耗 与色散都比较大,带宽较小,适用于低速短距离光通信系统中。多模光纤的优点在于其具有较大的纤芯直径,可以用较高的耦合效率将光功率注入到多模光 纤中。

  常用单模光纤的直径也为125μm,芯径为8~12μm。在单模光纤中,因只有一个模式传播,不存在模间色散, 具有较大的传输带宽,并且在1 550 nm波长区的损耗非常低(约为0.2~0.25 dB/km),因而被广泛应用于高速长 距离的光纤通信系统中。使用单模光纤时,色度色散是影响信号传输的主要因素,这样单模光纤对光源的谱宽和 稳定性都有较高的要求,即谱宽要窄,稳定性要好。单模光纤一般必须使用半导体激光器激励。

  按最佳传输频率窗口划分,可分为常规型单模光纤和色散位移型单模光纤。常规型单模光纤的最佳传输频率在1  310 nm附近,而色散位移光纤的最佳传输频率在1550nm附近。

  按折射率分布的情况化分,可分为阶跃折射率(SI)光纤和渐变折射率(GI)光纤。阶跃折射率光纤 从芯层到 包层的折射率是突变的。多模阶跃折射率光纤的成本低,模间色散高,适用于短距离低速通信。多模渐变折射率 光纤从芯层到包层的折射率是逐渐变小,可使高阶模按正弦形式传播,这样能减少模间色散,提高光纤带宽,增 加传输距离,但成本较高。现在所使用的多模光纤多为渐变折射率光纤。

  目前,国际上单模光纤的标准主要是ITU-T的系列:G.650“单模光纤相关参数的定义和试验方法”、G.652“ 单模光纤和光缆特 性”、G.653“色散位移单模光纤和光缆特性”、G.654“截止波长位移型单模光纤和光缆特性 ”、G.655“非零色散位移单模光纤和光缆特性”及G.656“用于宽带传输的非零色散位移光纤和光缆特性”。ITU -T对多模光纤的标准是G.651“50/125μm多模渐变折射率光纤和光缆特性”。

  国际电工委员会也颁布了系列标准IEC 60793,我国的光纤标准包括国家标准GB/T15912系列和信息产业部颁布 的通信行业标准YD/T系列。

  (1)单模光纤。

  ● 普通单模光纤

  普通单模光纤是指零色散波长在1 310 nm窗口的单模光纤,又称色散未移位光纤或普通光纤,国际电信联盟 (ITU-T)把这种光纤规范为G.652光纤。

  G.652属于第一代单模光纤,是1310 nm波长性能最佳的单模光纤。当工作波长在1310 nm时,光纤色散很小,色 散系数D在0~3.5 ps/nm·km,但损耗较大,约为0.3~0.4 dB/km。此时,系统的传输距离主要受光纤衰减限制。 在1 550 nm波段的损耗较小,约为0.19~0.25 dB/km,但色散较大,约为20 ps/nm·km。传统上在G.652上开通 的PDH系统多是采用1310nm零色散窗口。但近几年开通的SDH系统则采用1550nm的最小衰减窗口。另外,由于掺铒 光纤放大器(Erbium Doped Fiber Amplifier,EDFA)的实用化,密集波分复用(DWDM)也工作于1550nm窗口, 使得1550nm窗口己经成为G.652光纤的主要工作窗口。

  对于基于2.5 Gb/s及其以下速率的DWDM系统,G.652光纤是一种最佳的选择。但由于在1550nm波段的色散较大, 若传输10 Gb/s的信号,一般在传输距离超过50km时,需要使用价格昂贵的色散补偿模块,这会使系统的总成本增 大。色散补偿模块会引入较大的衰减,

  因此常将色散补偿模块与EDFA一起工作,置于EDFA两级放大之间,以免占用链路的功率余度。

  表1是有关G.652光纤的一些光学特性参数和凡何特性参数。

  表1 G.652普通单模光纤的典型光学特性参数和几何特性参数

  G.652类光纤进一步分为A、B、C、D四个子类。G.652A光纤主要适用于ITU-T G.951规定的SDH传输系统和G.691 规定的带光放大的单通道直到STM-16 的SDH传输系统,只能支持2.5Gb/s及其以下速率的系统。G.652B光纤主要 适用于ITU-T G.957规定的SDH传输系统和G.691规定的带光放大的单通道SDH传输系统直到STM-64的ITU-T  G.692带光放大的波分复用传输系统,可以支持对PMD有参数要求的10 Gb/s速率的系统。G.652C光纤的适用范围同 B类相似,这类光纤允许G.951传输系统使用在1 360~1 530 nm之间的扩展波段,增加了可用波长数。G.652D光纤 为无水峰光纤,其属性与G.652B光纤基本相同,而衰减系数与G.652C光纤相同,可以工作在1360~1530nm全波段 。

  ● 色散位移光纤

  G.653色散位移光纤,是在G.652光纤的基础上,将零色散点从1 310 nm窗口移动到1 550 nm窗口,解决了1 550  nm波长的色散对单波长高速系统的限制问题。但是由于EDFA在DWDM中的使用,进入光纤的光功率有很大的提高, 光纤非线性效应导致的四波混频在G.653光纤上对DWDM系统的影响严重,G.653并没有得到广泛推广。主要原因是 在1 550 nm窗口,G.653的色散非常小,比较容易产生各种光学非线性效应网。

  ● 非零色散位移光纤

  G.655非零色散位移光纤是在1 550 nm窗口有合理的、较低的色散,能够降低四波混频和交叉相位调制等非线性 影响,同时能够支持长距离传输,而尽量减少色散补偿网。

  G.655光纤在1 550 nm波长区的色散值约为2 ps/nm·km。在1 550 nm处具有正色散的G.655光纤可以利用色散补 偿其一阶和二阶色散。具有负色散的G.655光纤不存在调制不稳定性问题,对交叉相位调制不敏感。

  第二代G.655光纤包括低色散斜率光纤和大有效面积光纤。所谓色散斜率指光纤色散随波长变化的速 率,又称高阶色散。DWDM系统中,由于色散斜率的作用,各通路波长的色散积累量是不同的,其中 位于两侧的边缘通路间的色散积累量差别最大。当传输距离超过一定值后,具有较大色散积累量通路的色散值超 标,从而限制了整个WDM系统的传输距离。低色散斜率光纤具有更合理的色散规范值,简化了色散补偿。

  低色散斜率G,655光纤的色散值在0.05 ps/nm·km以下,在1 530~1 565 nm波长范围的色散值为2.6~6.0  ps/nm·km,在1 565~1 625 nm波长范围的色散值为4.0~8.6 ps/nm·恤。其色散随波长的变化幅度比其他非零 色散光纤要小35%~55%,从而使光纤在低波段的色散有所增加,可以较好地压制四波混频和交叉相位调制影响 ,而另一方面又可以使高波段的色散不致过大,仍然可以使10 Gb/s信号传输足够远的距离而无须色散补偿。

  大有效面积光纤具有较大的有效面积,可承受较高的光功率,因而可以更有效地克服光纤的非线性影响。 超高 速系统的主要性能限制是色散和非线性。通常,线性色散可以用色散补偿的方法来消除,而非线性的影响却不能 用简单的线性补偿的方法来消除。提高光纤纤芯的有效面积,降低纤芯内的光功率密度,是解决非线性问题的方 法之一。大有效面积光纤的有效面积达72μ㎡以上,零色散点处于1 510 nm左右,其色散系数在1 530~1 565 nm 窗口内处于2~6 ps/nm km之内,而在1 565~1 625 nm窗口内处于4.5~11.2 ps/nm·km之内,从而可以进一步减 小四波混频的影响。

  G.656光纤是为了进一步扩展DWDM系统的可用波长范围,在S(1460~1530 nm)、C(1 530~1 565 nm)和L(1  565~1 625 nm)波段均保持非零色散的一种新型光纤。

  (2)多模光纤。

  尽管单模光纤的品种不断出现,功能被不断地丰富和增强着,但多模光纤并没有被单模光纤所取代,而是仍然 保持了稳定的市场份额,并且得到了不断的发展。在传输距离较短、节点多、接头多、弯路多、连接器和耦合器 用量大、规模小、单位光纤长度使用光源个数多的网络中,使用单模光纤无源器件比多模光纤要贵,而且相对精 密、容差小,操作不如多模器件方便可靠。多模光纤的芯径较粗,数值孔径大,、能从光源中耦合更多的光功率 ,适应了网络中弯路多、节点多、光功率分路频繁、需要有较大光功率的特点。多模光纤的特性正好满足了这种 网络用光纤的要求。

  单模光纤只能使用激光器(LD)作光源,其成本比多模光纤使用的发光二极管(LED)高很多。垂直腔面发射激 光器(VCSEL)的出现,更增强了多模光纤在网络中的应用。VCSEL具有圆柱形的光束断面和高的调制速率,与光 纤的耦合更容易,而价格则与LED接近。

  因此虽然仅从光纤的角度看,单模光纤性能比多模光纤好,但是从整个网络用光纤的角度看,多模光纤则占有 更大的优势。多模光纤一直是网络传输介质的主体,随着网络传输速率的不断提高和VCSEL的使用,多模光纤得到 了更多的应用,并且促进了新一代多模光纤的发展。

  1976年由康宁公司开发的50/125 gm渐变折射率多模光纤和1983年由朗讯Bell实验室开发的62.5/125μm渐变折 射率多模光纤,是两种使用量比较大的多模光纤。这两种光纤的包层直径和机械性能相同,但传输特性不同。它们都能提供如以太网、令牌网和FDDI协议在标准规定的距离内所需的带宽,而且都能升级到Gb/s的速率。

  ISO/IEC 11801所颁布的新的多模光纤标准等级中,将多模光纤分为OM1,OM2,OM3三类。其中OM1是指传统的62.5/125μm多模光纤,OM2是指传统的50/125μm多模光纤,0M3是指新型的万兆位多模光纤。

  ● 62.5/125μm渐变折射率多模光纤(OM1)

  常用的62.5/125μm渐变折射率多模光纤是指IEC-60793-2光纤产品规范中的Alb 类型。它的诞生晚于50/125μm渐变折射率多模光纤。由于62.5/125μm光纤的芯径和数值孔径较大,具有较强的集光能力和抗弯曲特性,特别是在 20世纪90年代中期以前,局域网的速率较低,对光纤带宽的要求不高,因而使这种光纤获得了最广泛的应用,成为20世纪80年代中期至90年代中期的十年 间在大多数国家中数据通信光纤市场中的主流产品。62.5/125μm渐变折射率多模光纤是最先被美国采用为多家行业标准的一种多模光纤,如AT&T的室 内配线系统标准;美国电子工业协会(ETA)的局域网标准;美国国家标准研究所(ANSI)的100 Mb/s令牌网标准;IBM的 令牌环标准等。通常62.5/125μm渐变折射率多模光纤的带宽为200~400 MHz·km,在1 Gb/s的速率下,850 nm波长可传输300 m,1 300 nm波长可传输550m。表2给出了62.5/125μm渐变折射率多模光纤的一些典型光学特性参数。

  表2 62.5/125μm渐变折射率多模光纤的典型光学特性参数

  ● 50/125μm渐变折射率多模光纤(OM2)

  普通的50/125μm渐变折射率多模光纤是指IEC-60793-2光纤产品规范中的Ala类 型。历史上,为了尽可能地降低局域网的系统成本,普遍采用价格低廉的LED作光源,而不用价格昂贵的LD。由于LED输出功率低,发散角比LD大很多,连 接器损耗大,而50/125μm多模光纤的芯径和数值孔径都比较小,不利于与LED的高效耦合,不如芯径和数值孔径大的62.5/125μm(Alb类) 光纤能使较多的光功率耦合到光纤链路中去,因此,50/125μm渐变折射率多模光纤在20世纪90年代中期以前没有被得到广泛的应用,而是主要在日本和 德国被作为数据通信标准使用。

  自20世纪末以来,局域网向lGb/s速率以上发展,以LED作光源的62.5/125μm多模光 纤的带宽己经不能满足要求。与62.5/125μm多模光纤相比,50/125μm多模光纤数值孔径和芯径较小,带宽比62.5/125μm多模光纤大, 制作成本也降低1/3。因此,50/125μm多模光纤重新得到了广泛的 应用。IEEE802.3z千兆位以太网标准中规定50/125μm多模和62.5/125μm多模光纤都可以作为千兆位以太网的传 输介质使用。但对新建网络,一般首选50/125μm多模光纤。

  50/125μm渐变折射率多模光纤中传输模的数目大约是62.5/125μm多模光纤中传输模的1/2.5,有效地降低了多 模光纤的模色散,使得带宽得到了显著的增加。

  表3是50/125μm(Alb类)渐变折射率多模光纤的典型光学特性参数。

  表3 50/125μm渐变折射率多模光纤的典型光学特性参数

  以上两种光纤具有同样的包层直径和机械性能,但是二者的带宽,以及与光源的耦合效率影响了其应用范 围。较 高的带宽能够传送较高的速率或支持较长的距离。在850 nm波长,50/125μm多模光纤的带宽(500 MHz·km)是 62.5/125μm多模光纤带宽(200 MHz·km)的两倍多。然而50 gm较小的芯径减小了基于LED光源的 耦合输入光功 率,从而减小了链路中允许的接头数和减少了受功率限制支持的距离。对于850 nm波长千兆位以太网,62.5/125  μm多模光纤能支持的链路长度为220m,50/125μm多模光纤能支持的链路长度为550m。两种光纤在300 m的长度内 都能提供足够的带宽。

  随着850 nm低价格VCSEL的出现和广泛应用,850nm窗口重要性增加了。VCSEL能以比长波长激光器低的价格给用 户提高网络速率。50/125μm多模光纤在850nm窗口具有较高的带宽,使用低价格VCSEL能支持较长距离的传输,适 合于千兆位以太网和高速率的协议,支持较长的距离。

  ● 新一代多模光纤(OM3)

  传统的OM1和OM2多模光纤从标准上和设计上均以LED方式为基础,随着网络速率和规模的提高,调制速率达到 Gb/s的短波长VCSEL激光光源成 为高速网络的光源之一。由于两种发光器件的不同,必须对光纤本身进行改造,以 适应光源的变化。为了满足10 Gb/s传输速率的需要,国际标准化组织/国际电工委员会(ISO/IEC)和美国电信工 业联盟(ITA-TR42)联合起草了新一代多模光纤的标准。ISO/IEC在其所制定的新的多模光纤等级中将新一代多 模光纤划为0M3类别。

  LED的最大调制速率一般只有600 MHz,由于调制速率的限制,使其在1 Gb/s以上的光纤网络中无法使用,故在1 Gb/s以上的高速网络中,发光器件主要采用激光器作光源。但实验中发现,简单地使用激光器代替LED作光源,系统的带宽不但没有升高,反而降低。原因是 在预制棒制作工艺中,光纤的轴心容易产生折射率凹陷。在使用LED作光源时,这种光纤中心折射率的畸变对信号的传输影响不大。原因是LED光源将光纤中的 所有模式都激励,光功率被分配到每一个模式上,只有少数几个传播模的时延特性会受到光纤中心折射率畸变的影响。而当使用激光器作光源时,由于激光器的光斑 和发散角都很小,只有在光纤中心传输的很少几个模式能被激励,每一个模式都携带着很大一部分光功率,光纤中心折射率畸变会对这几个被激励的少数模式的时延 特性产生很大的影响,从而造成光纤带宽降低,如图所示。


图 LED和LD光源及所激发的光纤中传导模及色散的成因

  (3)多模光纤的带宽。

  光纤的信号传输能力常用光纤带宽的概念表述。当光源的频谱宽度比信号的频谱宽度大得多时,可将光纤近似地看成一个线性系统,它起着低通滤波器的 作用。光纤的传输函数会随着信号调制频率的增加而下降。当光纤的传输函数与信号调制频率为零时的传输函数相比下降一半时,此时的信号调制频率称为光纤的3 dB带宽。光纤带宽的单位为MHz·km,即指一段光纤所能通过的脉冲的最大调制频率与光纤长度的乘积。当光纤中传输的数据速率提高时,所能传送的距离就 减小。一般而言,影响多模光纤性能的指标很多,但对其传输距离造成直接影响的主要是多模光纤的衰减和带宽参数。从理论上给出对多模光纤的带宽分析,无论是 对指导多模光纤的制造,或是对光纤网络的信号传输性能进行分析,都是非常有意义的。但由于带宽是一个表征多模光纤光学特性的综合指标,受到诸多因素的影 响,如光源、耦合方式、光波导结构,以及接收器性能等。因此,从理论上进行这种分析是非常复杂的。