Setting up Basic System Properties建立基本系统属性

We will create a non-sequential system with a filament source, a parabolic reflector and a plano-convex lens that couples light into a rectangular lightpipe, as shown in the layout below.我们将创造出一个带点光源的非序列系统,抛物面反射镜和一个平凸透镜镜头耦合成一个长方形光管灯,如下面的布局显示。


We will also trace analysis rays to the detectors to obtain the irradiance distribution at various points in the optical system.我们还将跟踪分析射线探测器获得光学系统中的各点照度分布。 Here is what we will finally produce:下面是我们最终将产生:

If ZEMAX is not running, please start it now.如果ZEMAX软件没有运行,启动它。

By default, ZEMAX starts in sequential/mixed mode.默认情况下,ZEMAX软件启动顺序/混合模式。 To switch to pure non-sequential mode, open ZEMAX and click File>Non Sequential Mode.要切换到纯非连续模式,运行ZEMAX软件,然后点击文件“>非序列模式。


Once in pure non-sequential mode, the window title bar of the editor will display the Non-Sequential Component Editor instead of the Lens Data Editor when in sequential mode.一旦纯非连续模式,在编辑器窗口的标题栏将显示非连续组件编辑器而不是在连续模式时只用于连续或混合模式系统的镜头数据编辑。 The Lens Data Editor is used only in sequential or mixed-mode systems.


For this exercise, we will set the system wavelength, specified under System>Wavelengths, to 0.587 µm.对于本练习,我们会设置系统波长,点击系统>波长,指定波长0.587微米。


We will also set the units under System>General Unit tab as follows (default).我们还将在系统设置单位,System>General /Unit tab “一般组标签如下(默认)(default).。

In addition to radiometric irradiance unit such as Watt.cm -2 , you can specify photometric and energy units such as lumen.cm -2 or joule.cm -2 .除除辐射辐照装置单位如Watt.cm -2外,您可以指定光度和能源单位,如lumen.cm -2或joule.cm -2 We will choose the default radiometric units for this exercise.我们将选择默认为这项工作辐射单位。


Insert a few lines in the non-sequential component editor by pressing the “Insert” key on your keyboard.按键盘上的“插入”(insert)插入几行非序列编辑器。

In the first part of the design, we will create a filament source collimated by a parabolic reflector.在设计的第一部分,我们将创建一个由抛物面反射镜准直的线光源。 We will then place a detector object at some distance +Z and look at the irradiance distribution on a detector.然后,我们将在+ Z上放置探测器对象和看光照在探测器上的分布。

建立第一个对象通过抛物面反射镜。在编辑器对象1列“对象类型”( Object type)双击(右击一下)下,打开Make the first object a parabolic reflector by double clicking (left clicking) on the “Object type” column of Object 1 in the editor and opening the Object Property window.,打开对象的属性窗口。 Under the Type tab set the Type to Standard Surface and click OK.根据类型选项卡类型设置为标准的表面(Standard Surfauce),然后单击确定。
In the editor, type the following parameters in the corresponding column of Standard Surface Object.在编辑器,请在标准表面对象相应的地方列下列参数。 For some of the parameters, you might have to scroll to the right of the editor to see the title column display the desired parameter name.对于某些参数,您可能需要滚动到编辑器的右方以看到标题列,显示所需参数的名称。

Material:           Mirror
Radius:             100
Conic:               -1 (parabola抛物线)
Max Aper:        150
Min Aper:         20 (center hole in the reflector在反射中心孔)

Material:           MirrorAll other parameters should be left as default所有其他参数缺省

You can open the NSC 3D layout under Analysis>Layout> NSC 3D Layout menu and/or the NSC Shaded model (Analysis>Layout> NSC Shaded model) to see what this reflector looks like.您可以通过“分析>布局”>NSC三维布局菜单,或NSC阴影模型(分析“布局”>NSC阴影模型)打开NSC三维布局,看看反射镜样子。


Change the object #2 type (currently a Null Object) in the editor to Source Filament object by repeating the previous step and choosing Source Filament in the property window.更改对象#2类型(目前是空对象),在编辑器第2行重复前面的步骤并在属性窗口选择线光源(Source Filament)。


We want the Source Filament to be at the focus of the parabolic reflector to collimate the beam.我们要把线光源放在在抛物反射面的焦点处以使光束准直平行。 The filament coil has 10 turns with overall length of 20mm and radius of turn of 5mm.灯丝线圈有10匝,总长度为20毫米,转弯半径为5毫米。

The parameter entered for the Source Filament in the editor should be:为在编辑器中输入光源相应参数:

Z position:  50 (focus of the parabolic reflector)
# Layout Rays  20
# Analysis Rays 5000000
Length:  20
Radius   5
Turns   10


按一下Update the 3D layout by clicking Update in the NSC 3D Layout menu.更新NSC 3D按钮更新三维布局。


The layout shows 20 rays emanating from the source filament, as specified in the # Layout Rays parameter.布局显示从灯源丝产生的20射线,如#Layout Rays参数指定光线数。

Rotating the Source旋转源

光源The source is oriented along the Z axis, but suppose we want to orient it along the X axis; we would need to rotate the source object by 90 degrees about the Y axis.沿Z轴是定向的,但假设我们希望它的方向沿X轴,我们就需要绕Y轴旋转光源90度。 在(tilt about Y)参数Enter 90 for the Tilt About Y parameter of the source.输入90。


The default YZ plane view of the layout show the filament being oriented along the X axis, however, the XZ plane view reveals that the filament is shifted towards +X axis.默认YZ平面视图显示灯丝定向沿X轴,但是,XZ平面视图显示灯丝是+ X轴延伸。 为了To rotate the layout, change the layout view angle in the Layout settings window (click Settings in the Layout menu).为了旋转布局,在布局设置窗口布局菜单(单击设置click Settings in the Layout menu)改变布局视图角度。 You can also rotate the drawing by pressing the left, right up down arrow key and Page Up and Page Down key on your keyboard.您还可以通过按下键盘上的上下左右或 Page Up and Page Down来旋转绘图。




The reason for the decenter is because the rotation axis of the Source Filament is not at the center of the object but at the end.离心离心的原因是因为源长丝的旋转轴是不是在对象的中心而是在最后。 为了事灯丝To center the source in the X axis, enter -10 in the X position column.源的中心在X轴,请在X位置列输入-10。


Update the layout and it will now show the desired filament location and orientation.更新的布局,现在将显示灯丝位置和方向。


Next step is to place a detector object at some distance from the source to study the irradiance distribution at that location.下一步是在离光源一定距离放置探测器,以研究光照在该位置辐射分布。
Make the 3rd object in the editor a “Detector Rect” and enter the following parameters.请在第三行编辑器中放置的“探测器整流器”( Detector Rect),并输入以下参数第三对象,方法如前面所说。

Z position:   800
Material: Blank (do not type the word "Blank" but leave the cell empty不要输入单词“空白”,让它空置)
X Half Width:  150 Y Half Width:  150
# X Pixels:  150 # Y Pixels:  150
Color:   1 (detector displays inverse greyscale探测器显示反转灰度)
所有其他参数All other parameters as default为默认

The YZ plane view (default) of the layout shows:该YZ平面显示(默认布局):


Observe that the layout shows the rays going though the detector.观察到的布局显示射线穿过探测器,The detector is totally transparent since the material type is air (blank in the editor).该探测器完全透明的,因为这种探测器材料是空气(编辑器中的探测器材料空白)。


To see the optical intensity at the detector, we need to open the Detector Viewer by clicking Analysis > Detectors > Detector Viewer.要看到在探测器的光强,我们需要通过点击分析>探测器>检测器查看器(Analysis > Detectors > Detector Viewer)。 clip_image030[4]

You will notice that the detector viewer is blank with zero total power, even though we see rays reaching the detector in the layout.你会发现,探测器查看器总功率为零的空白,即使我们看到射线已经到达探测器。 The reason is because the rays are traced separately for the layout and for the detector viewer.原因是因为布局和探测器探测器的光线追踪是分开的。 We need to trace the analysis rays to the detector first to see the result.我们需要跟踪分析光线(# Analysis Rays)到探测器上以得到结果。The number of rays traced to the detector is specified in the “# Analysis Rays” parameter column of the Source Filament object in the editor, which is usually a large number: 5 million in this case. Remember, layout rays do not affect the Detector Viewer results; only analysis rays do .该追溯到探测器中的射线数在线光源编辑器中参数列“#分析的射线”( “# Analysis Rays)被指定,这通常是一个很大的数字:在这种情况下500.00万。 记住,布局射线不影响探测器浏览器的结果,只有分析射线才影响

To trace analysis rays to the detector, open the Detector Control window under Analysis>Detectors>Ray Trace / Detector Control.要追迹分析射线(“# Analysis Rays)到探测器,打开探测器控制窗口下的分析 “>探测器”光线跟踪/检测器控制。(Analysis>Detectors>Ray Trace / Detector Control) clip_image032[4]

Always remember to the clear the detector by pressing  the Clear Detector button, if you do not wish to add the result from the previous trace to the current one.永远记住按清除检测按钮清除探测器,如果你不希望添加从以前的跟踪结果到下一次追迹。 Press Clear Detectors then Trace button followed by Exit.按清除探测器然后追迹按钮然后退出。

The detector viewer will display the irradiance distribution, revealing the hotspots caused by the filament source.该探测器浏览器将显示辐射分布,展示了丝源造成的热点。


If your Detector Viewer looks different, open the detector viewer settings window and make sure the settings are as follows.如果你的检测器样子不同,打开检测器设置窗口,并确保设置如下。


You can also see the detector trace result in the NSC Shaded Model Layout by selecting “Color pixels by last analysis” option in the settings.您还可以在NSC阴影示范布局中通过选择“最后的分析颜色的像素”( Color pixels by last analysis)中的设置选项看到检测微量选择,在的结果。




Now that we have a source and a reflector, we will add a refractive plano-convex lens 10mm to the right (+Z) of the detector.  Insert a line after Detector Rect in the editor and make the type Standard Lens with the following parameter values.现在,我们有一个光源和反射镜,我们将增加一个折射普莱诺——凸透镜 镜头在检测器右方10mm处(+ ž)。在检测器后的编辑器中插入一行后,并符合以下参数的类型标准镜头值。
Ref Object:  3Ref Object:  3
Z Position: 10
Material: N-BK7
Radius 1: 300
Clear 1: 150
Edge 1: 150
Thickness: 70
Clear 2: 150
Edge2 : 150


Update the 3D Layout更新的三维布局


Notice how we referenced the position of the lens to object 3 (Detector Rect) by entering the value 3 in the Ref Object column and specified the Z position value of 10, instead of referencing to global vertex (Ref Object = 0) and specifying 810mm for the Z position parameter.注意我们引用探测器镜头的位置是通过输入的参考对象列Ref Object的值3,并规定Z位置的值为10实现,而不是参照全局顶点(参考对象Ref Object = 0),并指定Z位置参数810毫米实现。以 探测器为参照定位With the lens positioned referenced to the detector, the lens will always be 10mm to right (+Z) of the detector regardless of the detector position.镜头,镜头将永远是在探测器的右方10毫米(+ ž)而不论探测器的位置。 This is how relative object positions are specified in non-sequential mode.这就是相对的对象位置在非连续模式中指定。
To see how the focused beam looks like, place another detector 650mm to the right (+Z) of the lens with the following parameters.要了解聚焦光束的情况,另设探测器在标准镜头右方650毫米处(+ z),参数如下。

Ref Object:  4Ref Object:  4
Z position:  650
Material: Blank
X Half Width:  100
Y Half Width:  100
# X Pixels:  150
# Y Pixels:  150
Color:   1

All other parameters: Default所有其他参数:默认


Update the 3D Layout更新的三维布局


Open another Detector Viewer by clicking Analysis>Detectors>Detector Viewer and make the settings as follows.通过单击分析Analysis>Detectors>Detector Viewer打开另一个探测器查看窗口,使检测器的设置如下。


Now, we are ready to trace analysis rays to the detector again.现在,我们已经准备好跟踪分析射线探测器了。 Since the N-BK7 lens is uncoated, we need to account for the reflection losses (Fresnel reflection), thus need to enable “Use Polarization” option in the Detector Control window.因为因为N - BK7镜头是没有镀膜的,我们需要考虑它的反射损失(菲涅尔反射),因而需要在Detector Control窗口选择启用“使用两极分化”( Use Polarization)。 (Note that we are not splitting rays at this time, and so the reflection losses are accounted for, but the reflected energy is not being propagated. Clicking "Split Rays" will create child rays that take the reflected energy away.) (请注意,我们无法在此时间分裂射线,所以我们考虑了反射损失,但反射的能量没有得到传播。点击“Split Rays”将创建子射线带走反射的能量。)


现在在检测器查看器报告中的The total power, reported in the Detector Viewer is now accounting for reflection losses and bulk absorption in the lens.总功率说明镜头的反射损失和大量的体吸收。



As a final step, we will add a rectangular acrylic lightpipe 20mm to the right (+Z) of the Detector #5.作为最后一步,我们将在第五个面(探测器)的右方(+ z)20毫米处增加一个矩形ADAT光纤

Add Rectangular Volume object in the editor, after Detector #5, with the following parameters:在编辑器中添加Rectangular Volume object矩形对象卷后,5号探测器,具有以下参数:

Ref Object:  -1 (使用相对对象作为Rectangular Volume的参考)
Z position:  20
Material:  Acrylic
X1 Half Width  70
Y1 Half Width: 70
Z length:  2000
X2 Half Width: 70
Y2 Half Width: 70

All other parameters: Default所有其他参数:默认

Ref Object:  -1
When entering the material type Acrylic, you might get the following message.当输入压克力材料类型,您可能会收到以下消息。 Click Yes and ZEMAX will add to your file the MISC glass catalog, in which the material Acrylic is defined.单击是,ZEMAX软件将添加有丙烯酸材料的文件到玻璃目录。


This time, we have set the Ref Object parameter -1, which represent the previous object in the editor (Object #5 Detector Rect).这一次,我们确定了参考对象(Ref Object)的参数为-1,这代表了编辑器前一个对象(比如对象#5)。 This is same as typing “5” for this parameter.这和在上述列键入参数5等效。 在编辑器中对同一个或不同一个非序列的复制或粘贴时,用负数Specifying relative object using negative number for the Ref Object is useful when group of objects in the editor are to be copied and pasted into the same or different non-sequential component editor.指定相对参考对象时是非常有用的。

Place another Detector Rect as object #7 in the editor with following parameters.放置另一探测器对象(Detector Rect)#7,其具有以下参数。

Ref Object:   -1 (使用相对对象Rectangular Volume作为参考)
Z position:  0 (这个量我们以后再赋值)
Material:  Absorb
X Half Width:  100
Y Half Width:  100
# X Pixels:  150
# Y Pixels:  150
Ref Object:   -1 (referenced to Rectangular Volume, using the relative object reference)Color:   1颜色:1
All other parameters: Default所有其他参数默认


使用PICKUP 解决的位置,探测器

更新The updates 3D layout will show the following三维布局后将显示如下


布局明显显示,The material type was set to Absorb to make the detector opaque rather than transparent, evident from the layout.该材料的类型设置为吸收后使探测器的不透明,而不是透明的。

Since we referenced the Detector #7 to the Rectangular Volume and set the Z position as zero, the Detector is located at the front surface of the lightpipe.由于我们所引用的检测器#7以Rectangular Volume作为参考,并设置Z位置为0,所以该探测器是位于的矩形光管前表面。 We want to place this detector 10mm to the right (+Z) of the lightpipe, hence the Z position value should be 2010 mm (thickness of Rectangular Volume + 10).我们希望把这个探测器放置在矩形光管右方10毫米处(+ ž),因此Z位置值应取2010年毫米(矩形右方 10mm)。 If  we change the thickness of the Rectangular Volume to a different value, the Z position of the detector #7 should also be changed.如果我们改变矩形光管Rectangular Volume厚度为不同的值,探测器#7的 Z位置也应有所改变。 For convenience, instead of typing the value 2010 mm in the editor, we will place a “Pickup solve” for the Z position of the detector.为方便,不在编辑器中输入值2010,我们将为探测器的Z位置设置 “Pickup solve”。 Then the Z position value in the editor will automatically be calculated to be 10 plus whatever the thickness of object 6 is.然后,不管对象6的厚度为何值,对象7的Z位置值会自动相对于#6加10。

Double or right click on the Z position parameter of object #7 in the editor to open the solve window.双击或右键点击对象#7的 Z Position编辑器,打开该窗口。

Type the following parameters.键入下面的参数。

The Parameter #0 in the Non-Sequential Component Editor corresponds to the “Material” column, so for the Rectangular Volume object, parameter #3 corresponds to “Z Length”.参数#0在非序列元件编辑器对应的“material”一栏,所以对于Rectangular Volume对象,参数#3对应为“Z Length”。

After pressing OK, a letter “P” will appears next to the parameter in the editor indicating the presence of Pickup solve.按OK后,一个字母“P”在参数旁边出现。


打开Open a third detector viewer to view detector #7 and re-trace the detector.第三个探测器查看器查看#7探测器,再跟踪检测器。 Remember to use the polarization option and to clear the detectors before tracing the detector, in the Detector Control window.请记住使用偏振选项polarization option,追迹前在探测器控制窗口清除前面的追迹结果。

The trace time on a Dell Precision 370 machine running Windows XP Pro, 3.4 GHz Pentium 4 and 1GB of memory is about 2 minutes.跟踪在Dell Precision 370工作站运行Windows XP专业版,3.4 GHz奔腾4和1GB内存的机器约2分钟的时间。

The detector viewer shows that the light pipe has effectively removed the hot spots making the irradiance distribution almost uniform.检测器查看器中的结果表明光导管有效地消除光热点,使光强分布几乎均匀。


The zipped file of the complete system is included with this article as reference.整个系统压缩文件是包含这些作为参考文章。
NSCThe NSC Shaded Model can include the detector trace results.NSCNS阴影模型可以给出检测跟踪结果。 For the layout below, multiple-configuration capability of ZEMAX was used to display the system with and without the detector results in the same layout (we will not go into details on how to do this).对于下面的布局, ZEMAX软件多重配置能力是用来显示相同的布局中带或不带探测器的结果(我们将不会进入有关如何执行的详情)。 Users are encouraged to learn about the full non-sequential capacities of ZEMAX by referencing the user manual, reading other knowledge base articles and studying sample files that comes with ZEMAX.我们鼓励用户充通过使用ZEMAX软件用户手册、阅读其他知识库文章和研究ZEMAX软件自带示例文件等充分学习非序列模式。


Summary and References摘要和参考文献

This article has shown how to create and analyze a simple non-sequential system in ZEMAX.本文展示了如何在ZEMAX软件系统中创建和分析一个简单的非序列。 In summary:总之:

  • 尝试设计一个非连续系统之前,用户需要知道There are major differences between the sequential and non-sequential ZEMAX that users need to aware of before attempting to design a non-sequential system连续和非连续之间的主要差异
  • Layout rays do not affect detector trace results Layout rays不影响探测器跟踪结果
  • To account for Fresnel losses and bulk absorption, the polarization option should be used when tracing analysis rays to the detector为了说明菲涅耳损失和材料体吸收,当对探测器跟踪analysis rays时,应当使用偏振选项

References: 参考文献:
ZEMAX user Manual ZEMAX软件用户手册